Chapter 2 Differentiation

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

September 17, 2024

Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

September 17, 2024 1/82

Table of Contents

- 1 The derivative and the tangent line problem
- 2 Basic differentiation rules and rates of change
- 3 Product and Quotient Rules and higher-order derivatives
 - 4 The Chain Rule
- 5 Implicit differentiation

Table of Contents

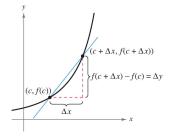
1 The derivative and the tangent line problem

- 2 Basic differentiation rules and rates of change
- 3 Product and Quotient Rules and higher-order derivatives
- 4 The Chain Rule
- 5 Implicit differentiation

- N

- Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century.
 - The tangent line problem
 - 2 The area problem
 - 3 The minimum and maximum problem
 - The velocity and acceleration problem
- Each problem involves the <u>notion of a limit</u> and calculus can be introduced with any of the four problems. Essentially, the problem of finding the tangent line at point *P* boils down to the problem of finding the slope of the tangent line at point *P*.

(人間) とうきょうきょう



 If (c, f(c)) is the point of tangency and (c + Δx, f(c + Δx)) is a second point on the graph of f, then the slope of the secant line through the two points is given by substitution into the slope formula.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$m_{sec} = \frac{f(c + \Delta x) - f(c)}{(c + \Delta x) - c} = \frac{f(c + \Delta x) - f(c)}{\Delta x}$$

Szu-Chi Chung (NSYSU)

- The right-hand side of this equation is a difference quotient
- The denominator Δx is the change in x, and the numerator $\Delta y = f(c + \Delta x) f(c)$ is the change in y.

Definition 2.1 (Tangent line with slope m)

If f is defined on an open interval containing c, and if the limit

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = m$$

exists, then the line passing through (c, f(c)) with slope m is the tangent line to the graph of f at the point (c, f(c)).

• The slope of the tangent line to the graph of f at the point (c, f(c)) is also called the slope of the graph of f at x = c.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 1 (The slope of the graph of a linear function)

Find the slope of the graph of f(x) = 2x - 3 at the point (2, 1).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 2 (Tangent lines to the graph of a nonlinear function)

Find the slopes of the tangent lines to the graph of $f(x) = x^2 + 1$ at the points (0,1) and (-1,2).

(日)

• The definition of a tangent line to a curve does not cover the possibility of a vertical tangent line. For vertical tangent lines, you can use the following definition. If *f* is continuous at *c* and

$$\lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = \infty \quad \text{or} \quad \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = -\infty$$

the vertical line x = c passing through (c, f(c)) is a vertical tangent line to the graph of f.

• For example, the function shown in Figure 1 has a vertical tangent line at (c, f(c)).

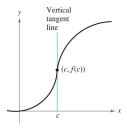


Figure 1: The graph of f has a vertical tangent line at (c, f(c)).

Szu-Chi Chung (NSYSU)

- If the domain of f is the closed interval [a, b], you can extend the definition of a vertical tangent line to include the endpoints by considering continuity and limits from the right (for x = a) and from the left (for x = b).
- The above limit is also used to define the differentiation.

Definition 2.2 (The derivative of a function)

The derivative of f at x is given by

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

provided the limit exists. For all x for which this limit exists, f' is a function of x.

SZU-Chi Chung (NSTSU)	ung (NSYSU)
-----------------------	-------------

< □ > < 同 > < 三 > < 三 >

- This "new" function gives the slope of the tangent line to the graph of f at the point (x, f(x)), provided that the graph has a tangent line at this point. The process of finding the derivative of a function is called <u>differentiation</u>.
- A function is <u>differentiable</u> at x if its derivative exists at x and is differentiable on an open interval (a, b) if it is differentiable at every point in the interval.

• In addition to f'(x), which is read as "f prime of x," other notations are used to denote the derivative of y = f(x). The most common are

$$f'(x), \quad \frac{\mathrm{d}y}{\mathrm{d}x}, \quad y', \quad \frac{\mathrm{d}}{\mathrm{d}x}[f(x)], \quad D_x[y].$$
 Notation for derivatives

• The notation dy/dx is read as "the derivative of y with respect to x" or simply "dy, dx." Using limit notation, you can write

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x).$$

Example 3 (Finding the derivative by the limit process)

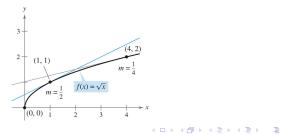
Find the derivative of $f(x) = x^3 + 2x$.

イロト 不得 トイヨト イヨト 二日

Example 4 (Using the derivative to find the slope at a point)

Find f'(x) for $f(x) = \sqrt{x}$. Then find the slopes of the graph of f at the points (1,1) and (4,2). Discuss the behavior of f at (0,0).

イロト 不得 トイラト イラト 一日



Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

September 17, 2024 15 / 82

Differentiability and continuity

• The following <u>alternative limit form</u> of the derivative is useful in investigating the relationship between <u>differentiability</u> and continuity. The derivative of *f* at *c* is

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

Alternative form of derivative

provided this limit exists (see Figure 2).

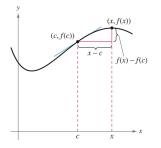


Figure 2: As x approaches c, the secant line approaches the tangent line.

Szu-Chi Chung (NSYSU)

The derivative of f at c is given by

$$f'(c) = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}$$

Let $x = c + \Delta x$. Then $x \to c$ as $\Delta x \to 0$. So, replacing $c + \Delta x$ by x, you have

$$f'(c) = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

• Note that the existence of the limit in this alternative form requires that the one-sided limits

$$\lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \quad \text{and} \quad \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c}$$

exist and are equal. These one-sided limits are called the derivatives from the left and derivatives from the right, respectively.

Szu-Chi Chung (NSYSU)

- It follows that f is differentiable on the closed interval [a, b] if it is differentiable on (a, b) and if the derivative from the right at a and the derivative from the left at b both exist.
- If a function is not continuous at x = c, it is also not differentiable at x = c. For instance, the greatest integer function f(x) = ⌊x⌋ is not continuous at x = 0, and so it is not differentiable at x = 0

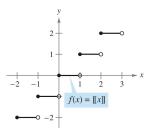


Figure 3: The greatest integer function is not differentiable at x = 0, because it is not continuous at x = 0.

• You can verify this by observing that

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\lfloor x \rfloor - 0}{x}$$
$$= \lim_{x \to 0^{-}} \frac{-1 - 0}{x} = \infty \quad \text{Derivative from the left}$$

and

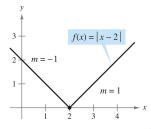
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\lfloor x \rfloor - 0}{x}$$
$$= \lim_{x \to 0^+} \frac{0 - 0}{x} = 0.$$
 Derivative from the right

• Although it is true that differentiability implies continuity (later on), the converse is not true.

Szu-Chi Chung (NSYSU)

Example 6 (A graph with a sharp turn)

The function f(x) = |x - 2| is continuous at x = 2. Discuss the behavior of its differentiability.



Szu-Chi Chung (NSYSU)

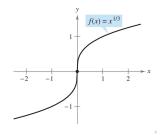
Chapter 2 Differentiation

E 6 4 E 6 September 17, 2024 20 / 82

э

Example 7 (A graph with a vertical tangent line)

The function $f(x) = x^{1/3}$ is continuous at x = 0. Discuss the behavior of its differentiability.



Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

September 17, 2024 21 / 82

Theorem 2.1 (Differentiability implies continuity)

If f is differentiable at x = c, then f is continuous at x = c.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Short summary

- We have two forms of derivative and the process of finding the derivative is called differentiation
- A function is differentiable at x if its derivative exists at x
- If a function is differentiable at x = c, then it is continuous at x = c. So, differentiability implies continuity.
- It is possible for a function to be continuous at x = c and not be differentiable at x = c. So, continuity does not imply differentiability. eg. f(x) = |x² 1| at x = ±1.

Table of Contents

The derivative and the tangent line problem

2 Basic differentiation rules and rates of change

3 Product and Quotient Rules and higher-order derivatives

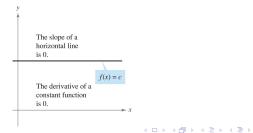
4 The Chain Rule

5 Implicit differentiation

Theorem 2.2 (The Constant Rule)

The derivative of a constant function is 0. That is, if c is a real number

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[c\right]=0.$$



Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

September 17, 2024

3

25 / 82

Example 1 (Using the Constant Rule)

Function	Derivative
a. <i>y</i> = 7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
b. $f(x) = 0$	$\overline{f'(x)} = 0$
c. $s(t) = -3$	s'(t) = 0
d. $y = k\pi^2$, k is constant	y'=0

2

イロト イヨト イヨト イヨト

• Before proving the next rule, we review the procedure for expanding a binomial:

$$(x + \Delta x)^{2} = x^{2} + 2x\Delta x + (\Delta x)^{2}$$

(x + \Delta x)^{3} = x^{3} + 3x^{2}\Delta x + 3x(\Delta x)^{2} + (\Delta x)^{3}

• The general binomial expansion for a positive integer n is

$$(x + \Delta x)^n = x^n + nx^{n-1}(\Delta x) + \underbrace{\frac{n(n-1)x^{n-2}}{2}(\Delta x)^2 + \dots + (\Delta x)^n}_{(\Delta x)^2 \text{ is a factor of these terms.}}$$

A B b A B b

Image: A matrix

Theorem 2.3 (The Power Rule)

If n is a rational number, then the function $f(x) = x^n$ is differentiable and

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[x^{n}\right]=nx^{n-1}.$$

For f to be differentiable at x = 0, n must be a number such that x^{n-1} is defined on an interval containing 0.

- We will prove the case for which *n* is a positive integer greater than 1.
- You will prove the case for n = 1. In Section 2.3, it proves the case for which n is a negative integer. In Section 2.5, you are asked to prove the case for which n is rational. In Section 5.5, the Power Rule will be extended to cover irrational values of n.

1 E N 1 E N

• If *n* is a positive integer greater than 1, then the binomial expansion produces

э

A D N A B N A B N A B N

• When using the Power Rule, the case for which *n* = 1 is best thought of as a separate differentiation rule. That is,

$$\frac{\mathrm{d}}{\mathrm{d}x}[x] = 1.$$
 Power Rule when $n = 1$

• This rule is consistent with the fact that the slope of the line *y* = *x* is 1, as shown in Figure 4.

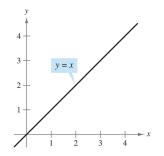


Figure 4: The slope of the line y = x is 1.

Szu-Chi Chung (NSYSU)

Example 2 (Using the Power Rule)

Function	Derivative
a. $f(x) = x^3$	
b. $g(x) = \sqrt[3]{x}$	
c. $y = \frac{1}{x^2}$	

3

・ロト ・四ト ・ヨト ・ヨト

Example 3 (Finding the slope of a graph)

Find the slope of the graph of $f(x) = x^4$ when **a.** x = -1 **b.** x = 0 **c.** x = 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Example 4 (Finding an equation of a tangent line)

Find an equation of the tangent line to the graph of $f(x) = x^2$ when x = -2.

イロト 不得下 イヨト イヨト 二日

Theorem 2.4 (The Constant Multiple Rule)

If f is a differentiable function and c is a real number, then cf is also differentiable and $\frac{d}{dx} [cf(x)] = cf'(x)$.

イロト 不得 トイヨト イヨト 二日

Example 5 (Using the Constant Multiple Rule)

Function	Derivative	
a. $y = 5x^3$		
b. $y = \frac{2}{x}$		
c. $f(t) = \frac{4t^2}{5}$		
d. $y = 2\sqrt{x}$		
e. $y = \frac{1}{2\sqrt[3]{x^2}}$		
f. $y = -\frac{3x}{2}$		

Szu-Chi Chung (NSYSU)

September 17, 2024 35 / 82

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Constant Multiple Rule and the Power Rule can be combined into one rule. The combination rule is

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[cx^{n}\right]=cnx^{n-1}.$$

Example 6 (Using parentheses when differentiating)						
Function	Rewrite	Differentiate	Simplify			
a. $y = \frac{5}{2x^3}$						
b. $y = \frac{5}{(2x)^3}$						
c. $y = \frac{7}{3x^{-2}}$						
d. $y = \frac{7}{(3x)^{-2}}$						

э

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem 2.5 (The Sum and Difference Rules)

The sum (or difference) of two differentiable functions f and g is itself differentiable. Moreover, the derivative of f + g (or f - g) is the sum (or difference) of the derivatives of f and g.

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x) \qquad Sum Rule$$
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x) \qquad Difference Rule$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 7 (Using the Sum and Difference Rules)

Function Derivative **a.** $f(x) = x^3 - 4x + 5$ **b.** $g(x) = -\frac{x^4}{2} + 3x^3 - 2x$ **c.** $y = \frac{3x^2 - x + 1}{x} = 3x - 1 + \frac{1}{x}$

Szu-Chi Chung	(NSYSU)
---------------	---------

イロト 不得下 イヨト イヨト 二日

Theorem 2.6 (Derivatives of the sine and cosine functions)

$$\frac{\mathrm{d}}{\mathrm{d}x}[\sin x] = \cos x$$
 $\frac{\mathrm{d}}{\mathrm{d}x}[\cos x] = -\sin x$

3

< □ > < □ > < □ > < □ > < □ > < □ >

- This differentiation rule is shown graphically in Figure 5.
- Note that for each x, the slope of the sine curve is equal to the value of the cosine.
- The proof of the second rule is left as an exercise (see Exercise 114).

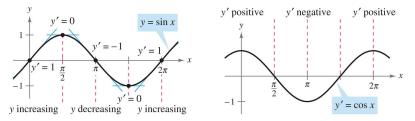


Figure 5: The derivative of the sine function is the cosine function.

Example 8 (Derivatives involving sines and cosines)

Function

Derivative

a. $y = 2 \sin x$

b.
$$y = \frac{\sin x}{2} = \frac{1}{2} \sin x$$

c. $y = x + \cos x$

d.
$$y = \cos x - \frac{\pi}{3} \sin x$$

Szu-Chi Chung (NSYSU)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The derivative and the tangent line problem

2 Basic differentiation rules and rates of change

Product and Quotient Rules and higher-order derivatives

The Chain Rule

5 Implicit differentiation

Theorem 2.7 (The Product Rule)

The product of two differentiable functions f and g is itself differentiable. Moreover, the derivative of fg is the first function times the derivative of the second, plus the second function times the derivative of the first.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[f(x)g(x)\right] = f(x)g'(x) + g(x)f'(x)$$

• Some mathematical proofs, such as the proof of the Sum Rule, are straightforward. Others involve clever steps that may appear unmotivated to a reader. This proof involves such a step-subtracting and adding the same quantity.

< □ > < 同 > < 三 > < 三 >

Szu-Chi Cł	າung (N	SYSU)
------------	---------	-------

Chapter 2 Differentiation

September 17, 2024 44 / 82

・ロト・西ト・モン・ビー シック

• If f, g, and h are differentiable functions of x, then

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[f(x)g(x)h(x)\right] = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x).$$

Example 1 (Using the Product Rule)

Find the derivative of $h(x) = (3x - 2x^2)(5 + 4x)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 2 (Using the Product Rule)

Find the derivative of $y = 3x^2 \sin x$.

Example 3 (Using the Product Rule)

Find the derivative of $y = 2x \cos x - 2 \sin x$.

< □ > < 同 > < 三 > < 三 >

Theorem 2.8 (The Quotient Rule)

The quotient f/g of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$. Moreover, the derivative of f/g is given by the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}, \quad g(x) \neq 0$$

• As with the proof of Theorem 2.7, the key to this proof is subtracting and adding the same quantity.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Szu-Chi	Chung ((NSYSU)
---------	---------	---------

・ロト・西ト・モン・ビー シック

Example 4 (Using the Quotient Rule)

Find the derivative of $y = \frac{5x-2}{x^2+1}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 5 (Rewriting before differentiating)

Find an equation of the tangent line to the graph of $f(x) = \frac{3-(1/x)}{x+5}$ at (-1, 1).

イロト イポト イヨト イヨト 二日

Example 6 (Using the Constant Multiple Rule)

Function	Rewrite	Differentiate	Simplify
a. $y = \frac{x^2 + 3x}{6}$			
b. $y = \frac{5x^4}{8}$			
c. $y = \frac{-3(3x-2x^2)}{7x}$			
d. $y = \frac{9}{5x^2}$			

SZU-Chi Chung (NSTSU)	hung (NSYSU)	Szu-Chi
-----------------------	--------------	---------

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 7 (Proof of the Power Rule (negative integer exponents))

If *n* is a negative integer, there exists a positive integer *k* such that n = -k.

Szu-Chi Chung	(NSYSU)	
---------------	---------	--

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Derivatives of trigonometric functions

• Knowing the derivatives of the sine and cosine functions, you can use the Quotient Rule to find the derivatives of the four remaining trigonometric functions.

Theorem 2.9 (Derivatives of trigonometric functions)

 $\frac{d}{dx} [\tan x] = \sec^2 x \qquad \qquad \frac{d}{dx} [\cot x] = -\csc^2 x \\ \frac{d}{dx} [\sec x] = \sec x \tan x \qquad \qquad \frac{d}{dx} [\csc x] = -\csc x \cot x$

Considering $\tan x = (\sin x)/(\cos x)$ and applying the Quotient Rule, you obtain

The proofs of the other three parts of the theorem are left as an exercise (see Exercise 87).

Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

September 17, 2024 53 / 82

Example 8 (Differentiating trigonometric functions)

a.
$$y = x - \tan x$$

b. $y = x \sec x$

Example 9 (Different forms of a derivative)

Differentiate both forms of $y = \frac{1 - \cos x}{\sin x} = \csc x - \cot x$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The simplified form of a derivative after differentiation can be obtained as follows. Notice that the two characteristics of the form are the absence of negative exponents and the combining of like terms.

	f'(x) after differentiating	f'(x) after simplifying
Example 1	$(3x-2x^2)(4) + (5+4x)(3-4x)$	$-24x^2 + 4x + 15$
Example 3	$(2x)(-\sin x) + (\cos x)(2) - 2(\cos x)$	$-2x \sin x$
Example 4	$\frac{(x^2+1)(5)-(5x-2)(2x)}{(x^2+1)^2}$	$\frac{-5x^2+4x+5}{(x^2+1)^2}$
Example 5	$\frac{(x^2+5x)(3)-(3x-1)(2x+5)}{(x^2+5x)^2}$	$\frac{-3x^2+2x+5}{(x^2+5x)^2}$
Example 9	$\frac{(\sin x)(\sin x) - (1 - \cos x)(\cos x)}{\sin^2 x}$	$\frac{1-\cos x}{\sin^2 x}$

- You can define derivatives of any positive integer order. For instance, the second derivative is the derivative of the first derivative.
- Higher-order derivatives are denoted as follows.

First derivative:	y′,	f'(x),	$\frac{\mathrm{d}y}{\mathrm{d}x}$,	$\frac{\mathrm{d}}{\mathrm{d}x} [f(x)],$	$D_x[y]$
Second derivative:	y″,	f''(x),	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$,	$\frac{\mathrm{d}^2}{\mathrm{d}x^2} [f(x)],$	$D_x^2[y]$
Third derivative:	y‴,	f'''(x),	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}$,	$\frac{\mathrm{d}^3}{\mathrm{d}x^3} [f(x)],$	$D_x^3[y]$
Fourth derivative:	y ⁽⁴⁾ ,	$f^{(4)}(x),$	$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4}$,	$\begin{array}{c} \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right], \\ \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left[f(x) \right], \\ \frac{\mathrm{d}^3}{\mathrm{d}x^3} \left[f(x) \right], \\ \frac{\mathrm{d}^4}{\mathrm{d}x^4} \left[f(x) \right], \end{array}$	$D_x^4[y]$
	÷				
<i>n</i> th derivative:	y ⁽ⁿ⁾ ,	$f^{(n)}(x),$	$\frac{\mathrm{d}^n y}{\mathrm{d} x^n},$	$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \ [f(x)],$	$D_x^n[y]$

56 / 82

The derivative and the tangent line problem

- 2 Basic differentiation rules and rates of change
- 3 Product and Quotient Rules and higher-order derivatives

4 The Chain Rule

5 Implicit differentiation

< □ > < 凸

- This text has yet to discuss one of the most powerful differentiation rules—the Chain Rule. This rule deals with composite functions.
- For example, compare the functions shown below. Those on the left can be differentiated without the Chain Rule, and those on the right are best differentiated with the Chain Rule.

Without the Chain Rule	With the Chain Rule
$y = x^2 + 1$	$y = \sqrt{x^2 + 1}$
$y = \sin x$	$y = \sin 6x$
y = 3x + 2	$y = (3x + 2)^5$
$y = x + \tan x$	$y = x + \tan x^2$

Szu-Chi Chung (NSYSU)

58 / 82

Theorem 2.10 (The Chain Rule)

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$$

or, equivalently,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[f(g(x)) \right] = f'(g(x))g'(x).$$

イロト イポト イヨト イヨト 二日

f(g(x)) u = g(x) y = f(u) **a.** $y = \frac{1}{x+1}$ **b.** $y = \sin 2x$ **c.** $y = \sqrt{3x^2 - x + 1}$

d.
$$y = \tan^2 x$$

Example 3 (Applying the chain Rule)

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ for $y = (x^2 + 1)^3$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

The General Power Rule

- One of the most common types of composite functions is $y = [u(x)]^n$.
- The rule for differentiating such functions is called the General Power Rule, and it is a special case of the Chain Rule.

Theorem 2.11 (The General Power Rule)

If $y = [u(x)]^n$, where u is a differentiable function of x and n is a rational number, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = n[u(x)]^{n-1}\frac{\mathrm{d}u}{\mathrm{d}x}$$

or, equivalently,

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[u^{n}\right]=nu^{n-1}u'.$$

Szu-Chi Chung	(NSYSU)
---------------	---------

・ロト・西ト・モン・ビー シック

Example 4 (Applying the general Power Rule)

Find the derivative of
$$f(x) = (3x - 2x^2)^3$$
.

- 31

イロト イポト イヨト イヨト

Example 5 (Differentiating functions involving radicals)

Find all points on the graph of $f(x) = \sqrt[3]{(x^2 - 1)^2}$ for which f'(x) = 0 and those for which f'(x) does not exist.

Example 6 (Differentiating quotients with constant numerators)

Differentiate $g(t) = \frac{-7}{(2t-3)^2}$.

イロト 不得下 イヨト イヨト 二日

Simplifying derivatives

 The next examples illustrate techniques for simplifying the raw derivatives of functions involving products, quotients, and composites.

Example 7 (Simplifying by factoring out the least powers)

Find the derivative of $f(x) = x^2 \sqrt{1 - x^2}$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Example 8 (Simplifying the derivative of a quotient)

Find the derivative of
$$f(x) = \frac{x}{\sqrt[3]{x^2+4}}$$

Example 9 (Simplifying the derivative of a power)

Find the derivative of
$$y = \left(\frac{3x-1}{x^2+3}\right)^2$$

Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

September 17, 2024 66 / 82

3

イロト 不得 トイヨト イヨト

Example 10 (Find the derivative of the following functions. Applying the Chain Rule to trigonometric functions)

a. $y = \sin 2x$

b.
$$y = \cos(x - 1)$$

c. $y = \tan 3x$

Szu-Chi	Chung	(NSYSU)
---------	-------	---------

イロト 不得 トイヨト イヨト 二日

Example 11 (Find the derivative of the following functions. Parentheses and trigonometric functions)

a. y =
$$\cos 3x^2 = \cos(3x^2)$$

b. y =
$$(\cos 3)x^2$$

c. y =
$$\cos(3x)^2 = \cos(9x^2)$$

d. y =
$$\cos^2 x = (\cos x)^2$$

e. y =
$$\sqrt{\cos x} = (\cos x)^{1/2}$$

Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

September 17, 2024 68 / 82

Example 12 (Repeated application of the Chain Rule)

Find the derivative of $f(t) = \sin^3 4t = (\sin 4t)^3$

イロト 不得 トイヨト イヨト 二日

Example 13 (Tangent line of a trigonometric function)

Find an equation of the tangent line to the graph of $f(x) = 2 \sin x + \cos 2x$ at the point $(\pi, 1)$. Then determine all values of x in the interval $(0, 2\pi)$ at which the graph of f has a horizontal tangent.

< ロ > < 同 > < 三 > < 三 > 、

	-	
General Differentiation	Let u, v be differen-	Let f be a differen-
Rules	tiable functions of x	tiable function of <i>u</i> .
	Constant Rule:	(Simple) Power Rule:
	$\frac{\mathrm{d}}{\mathrm{d}x}[c]=0$	$\frac{\mathrm{d}}{\mathrm{d}x}\left[x^{n}\right] = nx^{n-1},$
		$\frac{\mathrm{d}}{\mathrm{d}x}[x] = 1$
	Constant Multiple Rule:	Sum or Difference Rule:
	$\frac{\mathrm{d}}{\mathrm{d}x}\left[cu\right]=cu'$	$\frac{\mathrm{d}}{\mathrm{d}x}\left[u\pm v\right]=u'\pm v'$
	Product Rule:	Quotient Rule:
	$\frac{\mathrm{d}}{\mathrm{d}x}\left[uv\right] = u'v + uv'$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{u}{v} \right] = \frac{u'v - uv'}{v^2}$
		General Power Rule:
	$\frac{\mathrm{d}}{\mathrm{d}x}\left[f(u)\right] = f'(u)u'$	
Derivatives of Trigono-	$\frac{\mathrm{d}}{\mathrm{d}x}[\sin x] = \cos x \frac{\mathrm{d}}{\mathrm{d}x}[\tan x]$	$[x] = \sec^2 x$
metric Functions		
	$\frac{\mathrm{d}}{\mathrm{d}x}\left[\operatorname{sec} x\right] = \operatorname{tan} x \operatorname{sec} x$	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left[\cos x\right] = -\sin x \frac{\mathrm{d}}{\mathrm{d}x}\left[\mathrm{d}x\right]$	$\cot x] = -\csc^2 x$
	$\frac{d}{dx} [\sec x] = \tan x \sec x$ $\frac{d}{dx} [\cos x] = -\sin x \frac{d}{dx} [\alpha x]$ $\frac{d}{dx} [\cos x] = -\cot x \csc x$	४ □ > ∢∄ > ∢≣ > ∢≣ > ≣ - ୭९୯
	•	

D The derivative and the tangent line problem

2 Basic differentiation rules and rates of change

3 Product and Quotient Rules and higher-order derivatives

4 The Chain Rule

5 Implicit differentiation

< □ > < 凸

Implicit and explicit functions

• Most functions have been expressed in explicit form. For example, in the equation

$$y = 3x^2 - 5$$
 Explicit form

the variable y is explicitly written as a function of x.

• Some functions are only implied by an equation. For instance, the function y = 1/x is defined implicitly by the equation xy = 1. Suppose you were asked to find dy/dx for this equation. You could begin by writing y explicitly as a function of x

Implicit Form	Explicit Form	Derivative
xy = 1	$y = \frac{1}{x} = x^{-1}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -x^{-2} = -\frac{1}{x^2}$

• We cannot, however, use this procedure when you are unable to solve for y as a function of x.

イロト イポト イヨト イヨト 二日

• For instance, how would you find dy/dx for the equation

$$x^2 - 2y^3 + 4y = 2$$

where it is very difficult to express y as a function of x explicitly? To do this, you can use implicit differentiation.

- To understand how to find dy/dx implicitly, you must realize that the differentiation is taking place with respect to x.
- When you differentiate terms involving y, you must apply the Chain Rule, because you are assuming that y is defined implicitly as a differentiable function of x!

Example 1 (Differentiating with respect to x)

a. $\frac{\mathrm{d}}{\mathrm{d}x} \left[x^3 \right]$

b. $\frac{d}{dx} [y^3]$

c. $\frac{\mathrm{d}}{\mathrm{d}x}[x+3y]$

d. $\frac{\mathrm{d}}{\mathrm{d}x}[xy^2]$

3

< □ > < □ > < □ > < □ > < □ >

Guidelines for implicit differentiation

- **1** Differentiate both sides of the equation with respect to *x*.
- Collect all terms involving dy/dx on the left side of the equation and move all other terms to the right side of the equation.
- Solution Factor dy/dx out of the left side of the equation.

• Solve for dy/dx.

E 6 4 E 6

Example 2 (Implicit differentiation)

Find
$$dy/dx$$
 given that $y^3 + y^2 - 5y - x^2 = -4$.

3

A D N A B N A B N A B N

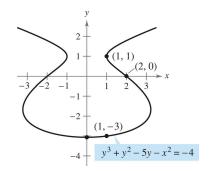


Figure 6: dy/dx given that $y^3 + y^2 - 5y - x^2 = -4$.

Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

▶ < ∃ > September 17, 2024 78 / 82

- 34

Example 3 (Representing a graph by differentiable functions)

If possible, represent y as a differentiable function of x. **a.** $x^2 + y^2 = 0$ **b.** $x^2 + y^2 = 1$ **c.** $x + y^2 = 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Example 4 (Finding the slope of a graph implicitly)

Determine the slope of the tangent line to the graph of $x^2 + 4y^2 = 4$ at the point $(\sqrt{2}, -1/\sqrt{2})$.

イロト 不得 トイヨト イヨト 二日

Example 7 (Finding the second derivative implicitly)

Given $x^2 + y^2 = 25$, find $\frac{d^2y}{dx^2}$.

Szu-Chi Chung (NSYSU)

Chapter 2 Differentiation

September 17, 2024 81 / 82

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 8 (Finding a tangent line to a graph)

Find the tangent line to the graph given by $x^2(x^2 + y^2) = y^2$ at the point $(\sqrt{2}/2, \sqrt{2}/2)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <